# Example for full simulation loop using a table-based lookup mechanism This example shows a simulation for a direct arylation where all combinations have been measured. This allows us to access information about previously conducted experiments from .xlsx- files. This example assumes some basic familiarity with using BayBE. We thus refer to [`campaign`](./../Basics/campaign.md) for a basic example. ## Necessary imports for this example ```python import os ``` ```python import pandas as pd import seaborn as sns ``` ```python from baybe import Campaign from baybe.objectives import SingleTargetObjective from baybe.parameters import ( CategoricalParameter, NumericalDiscreteParameter, SubstanceParameter, ) from baybe.recommenders import RandomRecommender from baybe.searchspace import SearchSpace from baybe.simulation import simulate_scenarios from baybe.targets import NumericalTarget from baybe.utils.plotting import create_example_plots ``` ## Parameters for a full simulation loop For the full simulation, we need to define some additional parameters. These are the number of Monte Carlo runs and the number of experiments to be conducted per run. ```python SMOKE_TEST = "SMOKE_TEST" in os.environ ``` ```python N_DOE_ITERATIONS = 2 if SMOKE_TEST else 20 N_MC_ITERATIONS = 2 if SMOKE_TEST else 200 BATCH_SIZE = 1 if SMOKE_TEST else 2 ``` ## Lookup functionality and data creation We read the information about the conducted experiments from a .xlsx-file. This data set was obtained from [Shields, B.J., Stevens et al. Nature 590, 89–96 (2021)](https://doi.org/10.1038/s41586-021-03213-y) and contains measurements of a reaction yield, varying typical reaction conditions. Depending on your system and settings, you might need to slightly adjust the following paths. The reason is that it depends on the folder in which you execute the `python` call. This code assumes that you call `python` either from the repository root folder or this folder. ```python try: lookup = pd.read_excel("./lookup.xlsx") except FileNotFoundError: try: lookup = pd.read_excel("examples/Backtesting/lookup.xlsx") except FileNotFoundError as e: print(e) ``` As usual, we set up some experiment. Note that we now need to ensure that the names fit the names in the provided .xlsx file! ```python dict_solvent = { "DMAc": r"CC(N(C)C)=O", "Butyornitrile": r"CCCC#N", "Butyl Ester": r"CCCCOC(C)=O", "p-Xylene": r"CC1=CC=C(C)C=C1", } dict_base = { "Potassium acetate": r"O=C([O-])C.[K+]", "Potassium pivalate": r"O=C([O-])C(C)(C)C.[K+]", "Cesium acetate": r"O=C([O-])C.[Cs+]", "Cesium pivalate": r"O=C([O-])C(C)(C)C.[Cs+]", } dict_ligand = { "BrettPhos": r"CC(C)C1=CC(C(C)C)=C(C(C(C)C)=C1)C2=C(P(C3CCCCC3)C4CCCCC4)C(OC)=" "CC=C2OC", "Di-tert-butylphenylphosphine": r"CC(C)(C)P(C1=CC=CC=C1)C(C)(C)C", "(t-Bu)PhCPhos": r"CN(C)C1=CC=CC(N(C)C)=C1C2=CC=CC=C2P(C(C)(C)C)C3=CC=CC=C3", "Tricyclohexylphosphine": r"P(C1CCCCC1)(C2CCCCC2)C3CCCCC3", "PPh3": r"P(C1=CC=CC=C1)(C2=CC=CC=C2)C3=CC=CC=C3", "XPhos": r"CC(C1=C(C2=CC=CC=C2P(C3CCCCC3)C4CCCCC4)C(C(C)C)=CC(C(C)C)=C1)C", "P(2-furyl)3": r"P(C1=CC=CO1)(C2=CC=CO2)C3=CC=CO3", "Methyldiphenylphosphine": r"CP(C1=CC=CC=C1)C2=CC=CC=C2", "1268824-69-6": r"CC(OC1=C(P(C2CCCCC2)C3CCCCC3)C(OC(C)C)=CC=C1)C", "JackiePhos": r"FC(F)(F)C1=CC(P(C2=C(C3=C(C(C)C)C=C(C(C)C)C=C3C(C)C)C(OC)=CC=C2OC)" r"C4=CC(C(F)(F)F)=CC(C(F)(F)F)=C4)=CC(C(F)(F)F)=C1", "SCHEMBL15068049": r"C[C@]1(O2)O[C@](C[C@]2(C)P3C4=CC=CC=C4)(C)O[C@]3(C)C1", "Me2PPh": r"CP(C)C1=CC=CC=C1", } ``` ## Creating the Objective ```python objective = SingleTargetObjective(target=NumericalTarget(name="yield", mode="MAX")) ``` ## Constructing campaigns for the simulation loop In this example, we create several campaigns. First let us create three campaigns that each use a different chemical encoding to treat substances. ```python substance_encodings = ["MORDRED", "RDKIT", "MORGAN_FP"] scenarios = { encoding: Campaign( searchspace=SearchSpace.from_product( parameters=[ SubstanceParameter( name="Solvent", data=dict_solvent, encoding=encoding ), SubstanceParameter(name="Base", data=dict_base, encoding=encoding), SubstanceParameter(name="Ligand", data=dict_ligand, encoding=encoding), NumericalDiscreteParameter( name="Temp_C", values=[90, 105, 120], tolerance=2 ), NumericalDiscreteParameter( name="Concentration", values=[0.057, 0.1, 0.153] ), ] ), objective=objective, ) for encoding in substance_encodings } ``` [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator [17:03:02] DEPRECATION WARNING: please use MorganGenerator Now we create another campaign that treats the substances as simple one-hot encoded categories. ```python parameters = [ CategoricalParameter(name="Solvent", values=dict_solvent.keys(), encoding="OHE"), CategoricalParameter(name="Base", values=dict_base.keys(), encoding="OHE"), CategoricalParameter(name="Ligand", values=dict_ligand.keys(), encoding="OHE"), NumericalDiscreteParameter(name="Temp_C", values=[90, 105, 120], tolerance=2), NumericalDiscreteParameter( name="Concentration", values=[0.057, 0.1, 0.153], tolerance=0.005 ), ] campaign_ohe = Campaign( searchspace=SearchSpace.from_product(parameters=parameters), objective=objective, ) ``` Finally, as baseline, we specify a campaign which provides recommendations randomly. ```python campaign_rand = Campaign( searchspace=SearchSpace.from_product(parameters=parameters), recommender=RandomRecommender(), objective=objective, ) ``` Update the scenarios: ```python scenarios.update({"OneHot": campaign_ohe, "Random Baseline": campaign_rand}) ``` We can now use the `simulate_scenarios` function to simulate a full optimization loop. Note that this function enables to run multiple scenarios by a single function call. For this, it is necessary to define the `scenarios` dictionary, mapping names to campaigns. ```python results = simulate_scenarios( scenarios, lookup, batch_size=BATCH_SIZE, n_doe_iterations=N_DOE_ITERATIONS, n_mc_iterations=N_MC_ITERATIONS, ) ``` Let's visualize the results. As you can see, the type of encoding has a tremendous impact on the outcome, with chemical encodings performing much better than traditional ones at almost no extra cost. ```python results.rename(columns={"Scenario": "Substance Encoding"}, inplace=True) ax = sns.lineplot( data=results, marker="o", markersize=10, x="Num_Experiments", y="yield_CumBest", hue="Substance Encoding", ) create_example_plots(ax=ax, base_name="full_lookup") ``` ```{image} full_lookup_light.svg :align: center :class: only-light ``` ```{image} full_lookup_dark.svg :align: center :class: only-dark ```