# Basic example for using BayBE This example shows how to create a campaign and how to use it. It is intended to be used as a first point of interaction with campaign after having read the corresponding [user guide](./../../userguide/campaigns). ## Necessary imports for this example ```python from baybe import Campaign from baybe.objectives import SingleTargetObjective from baybe.parameters import NumericalDiscreteParameter, SubstanceParameter from baybe.searchspace import SearchSpace from baybe.targets import NumericalTarget from baybe.utils.dataframe import add_fake_results ``` ## Setup This example presents the optimization of a direct Arylation reaction in a discrete space. For this, we require data for solvents, ligands and bases. ```python dict_solvent = { "DMAc": r"CC(N(C)C)=O", "Butyornitrile": r"CCCC#N", "Butyl Ester": r"CCCCOC(C)=O", "p-Xylene": r"CC1=CC=C(C)C=C1", } ``` ```python dict_base = { "Potassium acetate": r"O=C([O-])C.[K+]", "Potassium pivalate": r"O=C([O-])C(C)(C)C.[K+]", "Cesium acetate": r"O=C([O-])C.[Cs+]", "Cesium pivalate": r"O=C([O-])C(C)(C)C.[Cs+]", } ``` ```python dict_ligand = { "BrettPhos": r"CC(C)C1=CC(C(C)C)=C(C(C(C)C)=C1)C2=C(P(C3CCCCC3)C4CCCCC4)C(OC)=" "CC=C2OC", "Di-tert-butylphenylphosphine": r"CC(C)(C)P(C1=CC=CC=C1)C(C)(C)C", "(t-Bu)PhCPhos": r"CN(C)C1=CC=CC(N(C)C)=C1C2=CC=CC=C2P(C(C)(C)C)C3=CC=CC=C3", } ``` We define the chemical substances parameters using the dictionaries defined previously. Here, we use `"MORDRED"` encoding, but others are available. We proceed to define numerical discrete parameters `temperature` and `concentration` and create the search space. ```python solvent = SubstanceParameter("Solvent", data=dict_solvent, encoding="MORDRED") base = SubstanceParameter("Base", data=dict_base, encoding="MORDRED") ligand = SubstanceParameter("Ligand", data=dict_ligand, encoding="MORDRED") ``` ```python temperature = NumericalDiscreteParameter( "Temperature", values=[90, 105, 120], tolerance=2 ) concentration = NumericalDiscreteParameter( "Concentration", values=[0.057, 0.1, 0.153], tolerance=0.005 ) ``` ```python parameters = [solvent, base, ligand, temperature, concentration] ``` ```python searchspace = SearchSpace.from_product(parameters=parameters) ``` ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('O=C([O-])C.[Cs+]') _______________________________________smiles_to_mordred_features - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('O=C([O-])C(C)(C)C.[Cs+]') _______________________________________smiles_to_mordred_features - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('O=C([O-])C.[K+]') _______________________________________smiles_to_mordred_features - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('O=C([O-])C(C)(C)C.[K+]') _______________________________________smiles_to_mordred_features - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('CN(C)C1=CC=CC(N(C)C)=C1C2=CC=CC=C2P(C(C)(C)C)C3=CC=CC=C3') _______________________________________smiles_to_mordred_features - 0.2s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('CC(C)C1=CC(C(C)C)=C(C(C(C)C)=C1)C2=C(P(C3CCCCC3)C4CCCCC 4)C(OC)=CC=C2OC') _______________________________________smiles_to_mordred_features - 0.3s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('CC(C)(C)P(C1=CC=CC=C1)C(C)(C)C') _______________________________________smiles_to_mordred_features - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('CCCCOC(C)=O') _______________________________________smiles_to_mordred_features - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('CCCC#N') _______________________________________smiles_to_mordred_features - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('CC(N(C)C)=O') _______________________________________smiles_to_mordred_features - 0.0s, 0.0min ________________________________________________________________________________ [Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features... _smiles_to_mordred_features('CC1=CC=C(C)C=C1') _______________________________________smiles_to_mordred_features - 0.1s, 0.0min In this example, we maximize the yield of a reaction and define a corresponding objective. ```python objective = SingleTargetObjective(target=NumericalTarget(name="yield", mode="MAX")) ``` We now finally create the campaign using the objects configure previously. ```python campaign = Campaign( searchspace=searchspace, objective=objective, ) ``` ## Getting a recommendation and adding measurements We use the `recommend()` function of the campaign for getting measurements. ```python recommendation = campaign.recommend(batch_size=2) ``` ```python print("\n\nRecommended measurements with batch_size = 2: ") print(recommendation) ``` Recommended measurements with batch_size = 2: Solvent Base Ligand Temperature \ 357 p-Xylene Cesium pivalate Di-tert-butylphenylphosphine 120.0 187 Butyl Ester Cesium pivalate BrettPhos 120.0 Concentration 357 0.057 187 0.100 Adding target values is done by creating a new column in the `recommendation` dataframe named after the target. In this example, we use the `add_fake_results()` utility to create fake results. We then update the campaign by adding the measurements. ```python add_fake_results(recommendation, campaign.targets) print("\n\nRecommended experiments with fake measured values: ") print(recommendation) ``` Recommended experiments with fake measured values: Solvent Base Ligand Temperature \ 357 p-Xylene Cesium pivalate Di-tert-butylphenylphosphine 120.0 187 Butyl Ester Cesium pivalate BrettPhos 120.0 Concentration yield 357 0.057 31.359262 187 0.100 20.929889 ```python campaign.add_measurements(recommendation) ```