# Example for using custom constraints in discrete searchspaces This examples shows how a custom constraint can be created for a discrete searchspace. That is, it shows how the user can define a constraint restricting the searchspace. This example assumes some basic familiarity with using BayBE. We thus refer to [`campaign`](./../Basics/campaign.md) for a basic example. ## Necessary imports for this example ```python import os ``` ```python import numpy as np import pandas as pd ``` ```python from baybe import Campaign from baybe.constraints import DiscreteCustomConstraint from baybe.objectives import SingleTargetObjective from baybe.parameters import ( CategoricalParameter, NumericalDiscreteParameter, SubstanceParameter, ) from baybe.searchspace import SearchSpace from baybe.targets import NumericalTarget from baybe.utils.dataframe import add_fake_results ``` ## Experiment setup We begin by setting up some parameters for our experiments. `TEMPERATURE_RESOLUTION` describes the number of different temperatures used. ```python SMOKE_TEST = "SMOKE_TEST" in os.environ TEMPERATURE_RESOLUTION = 3 if SMOKE_TEST else 10 ``` ```python dict_solvent = { "water": "O", "C1": "C", "C2": "CC", "C3": "CCC", "C4": "CCCC", "C5": "CCCCC", "c6": "c1ccccc1", "C6": "CCCCCC", } solvent = SubstanceParameter("Solvent", data=dict_solvent, encoding="RDKIT") speed = CategoricalParameter( "Speed", values=["very slow", "slow", "normal", "fast", "very fast"], encoding="INT" ) temperature = NumericalDiscreteParameter( "Temperature", values=list(np.linspace(100, 200, TEMPERATURE_RESOLUTION)), tolerance=0.5, ) concentration = NumericalDiscreteParameter( "Concentration", values=[1, 2, 5, 10], tolerance=0.4 ) ``` ```python parameters = [solvent, speed, temperature, concentration] ``` ## Creating the constraint The constraints are handled when creating the searchspace object. We thus need to define our constraint first as follows. ```python def custom_function(df: pd.DataFrame) -> pd.Series: """This constraint implements a custom user-defined filter/validation functionality.""" # noqa: D401 # Situation 1: We only want entries where the solvent water is used with # temperatures <= 120 and concentrations <= 5 mask_bad1 = ( (df["Solvent"] == "water") & (df["Temperature"] > 120) & (df["Concentration"] > 5) ) # Situation 2: We only want entries where the solvent C2 is used with # temperatures <= 180 and concentrations <= 3 mask_bad2 = ( (df["Solvent"] == "C2") & (df["Temperature"] > 180) & (df["Concentration"] > 3) ) # Situation 3: We only want entries where the solvent C3 is used with # temperatures <= 150 and concentrations <= 3 mask_bad3 = ( (df["Solvent"] == "C3") & (df["Temperature"] > 150) & (df["Concentration"] > 3) ) # Combine all situations mask_good = ~(mask_bad1 | mask_bad2 | mask_bad3) return mask_good ``` We now initialize the `CustomConstraint` with all parameters this function should have access to. ```python constraint = DiscreteCustomConstraint( parameters=["Concentration", "Solvent", "Temperature"], validator=custom_function ) ``` ## Creating the searchspace and the objective ```python searchspace = SearchSpace.from_product(parameters=parameters, constraints=[constraint]) ``` [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator [17:00:47] DEPRECATION WARNING: please use MorganGenerator ```python objective = SingleTargetObjective(target=NumericalTarget(name="yield", mode="MAX")) ``` ## Creating and printing the campaign ```python campaign = Campaign(searchspace=searchspace, objective=objective) print(campaign) ``` Campaign Meta Data Batches done: 0 Fits done: 0 SearchSpace Search Space Type: DISCRETE SubspaceDiscrete Discrete Parameters Name Type Num_Values Encoding 0 Concentration NumericalDis... 4 None 1 Solvent SubstancePar... 8 SubstanceEnc... 2 Speed CategoricalP... 5 CategoricalE... 3 Temperature NumericalDis... 3 None Experimental Representation Solvent Speed Temperature Concentration 0 C1 fast 100.0 1.0 1 C1 fast 100.0 2.0 2 C1 fast 100.0 5.0 .. ... ... ... ... 447 water very slow 200.0 1.0 448 water very slow 200.0 2.0 449 water very slow 200.0 5.0 [450 rows x 4 columns] Meta Data was_recommended: 0/450 was_measured: 0/450 dont_recommend: 0/450 Constraints Type Affected_Paramet 0 DiscreteCust... [Concentrati... Computational Representation Concentration Solvent_RDKIT_Ma ... Speed Temperature 0 1.0 0.0 ... 0.0 100.0 1 2.0 0.0 ... 0.0 100.0 2 5.0 0.0 ... 0.0 100.0 .. ... ... ... ... ... 447 1.0 0.0 ... 4.0 200.0 448 2.0 0.0 ... 4.0 200.0 449 5.0 0.0 ... 4.0 200.0 [450 rows x 9 columns] Objective Type: SingleTargetObjective Targets Type Name ... Upper_Bound Transformation 0 NumericalTarget yield ... inf None [1 rows x 6 columns] TwoPhaseMetaRecommender Initial recommender RandomRecommender Compatibility: SearchSpaceType.HYBRID Recommender BotorchRecommender Surrogate GaussianProcessSurrogate Supports Transfer Learning: True Kernel factory: DefaultKernelFactory() Acquisition function: qLogExpectedImprovement() Compatibility: SearchSpaceType.HYBRID Sequential continuous: False Hybrid sampler: None Sampling percentage: 1.0 Switch after: 1 ## Manual verification of the constraint The following loop performs some recommendations and manually verifies the given constraints. ```python N_ITERATIONS = 3 for kIter in range(N_ITERATIONS): print(f"\n\n#### ITERATION {kIter+1} ####") print("## ASSERTS ##") print( "Number of entries with water, temp > 120 and concentration > 5: ", ( campaign.searchspace.discrete.exp_rep["Concentration"].apply( lambda x: x > 5 ) & campaign.searchspace.discrete.exp_rep["Temperature"].apply( lambda x: x > 120 ) & campaign.searchspace.discrete.exp_rep["Solvent"].eq("water") ).sum(), ) print( "Number of entries with C2, temp > 180 and concentration > 3: ", ( campaign.searchspace.discrete.exp_rep["Concentration"].apply( lambda x: x > 3 ) & campaign.searchspace.discrete.exp_rep["Temperature"].apply( lambda x: x > 180 ) & campaign.searchspace.discrete.exp_rep["Solvent"].eq("C2") ).sum(), ) print( "Number of entries with C3, temp > 150 and concentration > 3: ", ( campaign.searchspace.discrete.exp_rep["Concentration"].apply( lambda x: x > 3 ) & campaign.searchspace.discrete.exp_rep["Temperature"].apply( lambda x: x > 150 ) & campaign.searchspace.discrete.exp_rep["Solvent"].eq("C3") ).sum(), ) rec = campaign.recommend(batch_size=5) add_fake_results(rec, campaign.targets) campaign.add_measurements(rec) ``` #### ITERATION 1 #### ## ASSERTS ## Number of entries with water, temp > 120 and concentration > 5: 0 Number of entries with C2, temp > 180 and concentration > 3: 0 Number of entries with C3, temp > 150 and concentration > 3: 0 #### ITERATION 2 #### ## ASSERTS ## Number of entries with water, temp > 120 and concentration > 5: 0 Number of entries with C2, temp > 180 and concentration > 3: 0 Number of entries with C3, temp > 150 and concentration > 3: 0 #### ITERATION 3 #### ## ASSERTS ## Number of entries with water, temp > 120 and concentration > 5: 0 Number of entries with C2, temp > 180 and concentration > 3: 0 Number of entries with C3, temp > 150 and concentration > 3: 0