# Example for validation of a config file This example shows how to load and validate a user defined configuration file. We use the two configuration dictionaries. The first one represents a valid configuration, the second does not. ## Necessary imports ```python from cattrs import ClassValidationError ``` ```python from baybe import Campaign ``` ## Defining config dictionaries Note that the following explicit call `str()` is not strictly necessary. It is included since our method of converting this example to a markdown file does not interpret this part of the code as `python` code if we do not include this call. ```python CONFIG = str( """ { "searchspace": { "constructor": "from_product", "parameters": [ { "type": "CategoricalParameter", "name": "Granularity", "values": [ "coarse", "fine", "ultra-fine" ], "encoding": "OHE" }, { "type": "NumericalDiscreteParameter", "name": "Pressure[bar]", "values": [ 1, 5, 10 ], "tolerance": 0.2 }, { "type": "SubstanceParameter", "name": "Solvent", "data": { "Solvent A": "COC", "Solvent B": "CCCCC", "Solvent C": "COCOC", "Solvent D": "CCOCCOCCN" }, "decorrelate": true, "encoding": "MORDRED" } ], "constraints": [] }, "objective": { "type": "SingleTargetObjective", "target": { "type": "NumericalTarget", "name": "Yield", "mode": "MAX" } }, "recommender": { "type": "TwoPhaseMetaRecommender", "initial_recommender": { "type": "FPSRecommender" }, "recommender": { "type": "BotorchRecommender", "surrogate_model": { "type": "GaussianProcessSurrogate" }, "acquisition_function": "qEI", "allow_repeated_recommendations": false, "allow_recommending_already_measured": false }, "switch_after": 1 } } """ ) ``` ```python INVALID_CONFIG = str( """ { "searchspace": { "constructor": "from_product", "parameters": [ { "type": "INVALID_TYPE", "name": "Granularity", "values": [ "coarse", "fine", "ultra-fine" ], "encoding": "OHE" }, { "type": "NumericalDiscreteParameter", "name": "Pressure[bar]", "values": [ 1, 5, 10 ], "tolerance": 0.2 }, { "type": "SubstanceParameter", "name": "Solvent", "data": { "Solvent A": "COC", "Solvent B": "CCCCC", "Solvent C": "COCOC", "Solvent D": "CCOCCOCCN" }, "decorrelate": true, "encoding": "MORDRED" } ], "constraints": [] }, "objective": { "type": "SingleTargetObjective", "target": { "type": "NumericalTarget", "name": "Yield", "mode": "MAX" } }, "recommender": { "type": "TwoPhaseMetaRecommender", "initial_recommender": { "type": "FPSRecommender" }, "recommender": { "type": "BotorchRecommender", "surrogate_model": { "type": "GaussianProcessSurrogate" }, "acquisition_function": "qEI", "allow_repeated_recommendations": false, "allow_recommending_already_measured": false } } } """ ) ``` ## Verification of the two dictionaries The first validation should work. ```python Campaign.validate_config(CONFIG) print("The first config seems valid.") ``` The first config seems valid. This should fail. ```python try: Campaign.validate_config(INVALID_CONFIG) campaign = Campaign.from_config(INVALID_CONFIG) except ClassValidationError: print("Something is wrong with the second config, which is what we expected!") ``` Something is wrong with the second config, which is what we expected!