Source code for baybe.searchspace.validation
"""Validation functionality for search spaces."""
from collections.abc import Collection, Sequence
from typing import TypeVar
import pandas as pd
from baybe.exceptions import EmptySearchSpaceError
from baybe.parameters import TaskParameter
from baybe.parameters.base import Parameter
_T = TypeVar("_T", bound=Parameter)
[docs]
def validate_parameter_names( # noqa: DOC101, DOC103
parameters: Collection[Parameter],
) -> None:
"""Validate the parameter names.
Raises:
ValueError: If the given list contains parameters with the same name.
"""
param_names = [p.name for p in parameters]
if len(set(param_names)) != len(param_names):
raise ValueError("All parameters must have unique names.")
[docs]
def validate_parameters(parameters: Collection[Parameter]) -> None: # noqa: DOC101, DOC103
"""Validate the parameters.
Raises:
EmptySearchSpaceError: If the parameter list is empty.
NotImplementedError: If more than one
:class:`baybe.parameters.categorical.TaskParameter` is requested.
"""
if not parameters:
raise EmptySearchSpaceError("At least one parameter must be provided.")
# TODO [16932]: Remove once more task parameters are supported
if len([p for p in parameters if isinstance(p, TaskParameter)]) > 1:
raise NotImplementedError(
"Currently, at most one task parameter can be considered."
)
# Assert: unique names
validate_parameter_names(parameters)
[docs]
def get_transform_parameters(
parameters: Sequence[_T],
df: pd.DataFrame,
allow_missing: bool,
allow_extra: bool,
) -> list[_T]:
"""Extract the parameters relevant for transforming a given dataframe.
Args:
parameters: The parameters to be considered for transformation (provided
they have match in the given dataframe).
df: See :meth:`baybe.searchspace.core.SearchSpace.transform`.
allow_missing: See :meth:`baybe.searchspace.core.SearchSpace.transform`.
allow_extra: See :meth:`baybe.searchspace.core.SearchSpace.transform`.
Raises:
ValueError: If the given parameters and dataframe are not compatible
under the specified values for the Boolean flags.
Returns:
The (subset of) parameters that need to be considered for the transformation.
"""
parameter_names = [p.name for p in parameters]
if (not allow_missing) and (missing := set(parameter_names) - set(df)): # type: ignore[arg-type]
raise ValueError(
f"The search space parameter(s) {missing} cannot be matched against "
f"the provided dataframe. If you want to transform a subset of "
f"parameter columns, explicitly set `allow_missing=True`."
)
if (not allow_extra) and (extra := set(df) - set(parameter_names)):
raise ValueError(
f"The provided dataframe column(s) {extra} cannot be matched against"
f"the search space parameters. If you want to transform a dataframe "
f"with additional columns, explicitly set `allow_extra=True'."
)
return (
[p for p in parameters if p.name in df] if allow_missing else list(parameters)
)