Source code for baybe.simulation.scenarios

"""Batch simulation of multiple campaigns."""

from __future__ import annotations

import warnings
from collections.abc import Callable
from copy import deepcopy
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Literal

import numpy as np
import pandas as pd

from baybe.campaign import Campaign
from baybe.exceptions import NothingToSimulateError, UnusedObjectWarning
from baybe.simulation.core import simulate_experiment

if TYPE_CHECKING:
    from xarray import DataArray

_DEFAULT_SEED = 1337


[docs] def simulate_scenarios( scenarios: dict[Any, Campaign], lookup: pd.DataFrame | Callable | None = None, /, *, batch_size: int = 1, n_doe_iterations: int | None = None, initial_data: list[pd.DataFrame] | None = None, groupby: list[str] | None = None, n_mc_iterations: int = 1, random_seed: int | None = None, impute_mode: Literal[ "error", "worst", "best", "mean", "random", "ignore" ] = "error", noise_percent: float | None = None, ) -> pd.DataFrame: """Simulate multiple Bayesian optimization scenarios. A wrapper function around :func:`baybe.simulation.core.simulate_experiment` that allows to specify multiple simulation settings at once. Args: scenarios: A dictionary mapping scenario identifiers to DOE specifications. lookup: See :func:`baybe.simulation.core.simulate_experiment`. batch_size: See :func:`baybe.simulation.core.simulate_experiment`. n_doe_iterations: See :func:`baybe.simulation.core.simulate_experiment`. initial_data: A list of initial data sets for which the scenarios should be simulated. groupby: The names of the parameters to be used to partition the search space. A separate simulation will be conducted for each partition, with the search restricted to that partition. n_mc_iterations: The number of Monte Carlo simulations to be used. random_seed: An optional integer specifying the random seed for the first Monte Carlo run. Each subsequent runs will increase this value by 1. If omitted, the current random seed is used. impute_mode: See :func:`baybe.simulation.core.simulate_experiment`. noise_percent: See :func:`baybe.simulation.core.simulate_experiment`. Returns: A dataframe like returned from :func:`baybe.simulation.core.simulate_experiment` but with additional columns. See the ``Note`` for details. Note: The following additional columns are contained in the dataframe returned by this function: * ``Scenario``: Specifies the scenario identifier of the respective simulation. * ``Monte_Carlo_Run``: Specifies the Monte Carlo repetition of the respective simulation. * Optional, if ``random_seed`` is provided: A column ``Random_Seed`` that specifies the random seed used for the respective simulation. * Optional, if ``initial_data`` is provided: A column ``Initial_Data`` that specifies the index of the initial data set used for the respective simulation. * Optional, if ``groupby`` is provided: A column for each ``groupby`` parameter that specifies the search space partition considered for the respective simulation. """ @dataclass class SimulationResult: """A thin wrapper to enable dataframe-valued return values with xyzpy. Args: result: The result of the simulation. """ result: pd.DataFrame def make_xyzpy_callable(result_variable: str) -> Callable: """Make a batch simulator that allows running campaigns in parallel.""" from baybe._optional.simulation import xyzpy @xyzpy.label(var_names=[result_variable]) def simulate( Scenario: str, Monte_Carlo_Run: int, Initial_Data=None, ): """Callable for xyzpy simulation.""" data = None if initial_data is None else initial_data[Initial_Data] seed = None if random_seed is None else Monte_Carlo_Run + _DEFAULT_SEED result = _simulate_groupby( scenarios[Scenario], lookup, batch_size=batch_size, n_doe_iterations=n_doe_iterations, initial_data=data, groupby=groupby, random_seed=seed, impute_mode=impute_mode, noise_percent=noise_percent, ) if random_seed is not None: result["Random_Seed"] = seed return SimulationResult(result) return simulate def unpack_simulation_results(array: DataArray) -> pd.DataFrame: """Turn the xyzpy simulation results into a flat dataframe.""" # Convert to dataframe and remove the wrapper layer series = array.to_series() series = series.apply(lambda x: x.result) # Un-nest all simulation results dfs = [] for setting, df_result in series.items(): df_setting = pd.DataFrame( [setting], columns=series.index.names, index=df_result.index ) dfs.append(pd.concat([df_setting, df_result], axis=1)) # Concatenate all results into a single dataframe return pd.concat(dfs, ignore_index=True) # Collect the settings to be simulated combos = {"Scenario": scenarios.keys()} combos["Monte_Carlo_Run"] = range(n_mc_iterations) if initial_data: combos["Initial_Data"] = range(len(initial_data)) # Simulate and unpack result_variable = "simulation_result" batch_simulator = make_xyzpy_callable(result_variable) with warnings.catch_warnings(): warnings.filterwarnings( "ignore", category=UnusedObjectWarning, module="baybe.recommenders.pure.nonpredictive.base", ) da_results = batch_simulator.run_combos(combos)[result_variable] df_results = unpack_simulation_results(da_results) return df_results
def _simulate_groupby( campaign: Campaign, lookup: pd.DataFrame | Callable[..., tuple[float, ...]] | None = None, /, *, batch_size: int = 1, n_doe_iterations: int | None = None, initial_data: pd.DataFrame | None = None, groupby: list[str] | None = None, random_seed: int = _DEFAULT_SEED, impute_mode: Literal[ "error", "worst", "best", "mean", "random", "ignore" ] = "error", noise_percent: float | None = None, ) -> pd.DataFrame: """Scenario simulation for different search space partitions. A wrapper around :func:`baybe.simulation.core.simulate_experiment` that allows to partition the search space into different groups and run separate simulations for all groups where the search is restricted to the corresponding partition. Args: campaign: See :func:`baybe.simulation.core.simulate_experiment`. lookup: See :func:`baybe.simulation.core.simulate_experiment`. batch_size: See :func:`baybe.simulation.core.simulate_experiment`. n_doe_iterations: See :func:`baybe.simulation.core.simulate_experiment`. initial_data: See :func:`baybe.simulation.core.simulate_experiment`. groupby: See :func:`baybe.simulation.scenarios.simulate_scenarios`. random_seed: See :func:`baybe.simulation.core.simulate_experiment`. impute_mode: See :func:`baybe.simulation.core.simulate_experiment`. noise_percent: See :func:`baybe.simulation.core.simulate_experiment`. Returns: A dataframe like returned from :func:`baybe.simulation.core.simulate_experiment`, but with additional ``groupby columns`` (named according to the specified groupby parameters) that subdivide the results into the different simulations. Raises: NothingToSimulateError: If there is nothing to simulate. """ # Create the groups. If no grouping is specified, use a single group containing # all parameter configurations. # NOTE: In the following, we intentionally work with *integer* indexing (iloc) # instead of pandas indexes (loc), because the latter would yield wrong # results in cases where the search space dataframe contains duplicate # index entries (i.e., controlling the recommendable entries would affect # all duplicates). While duplicate entries should be prevented by the search # space constructor, the integer-based indexing provides a second safety net. # Hence, the "reset_index" call. if groupby is None: groups = ((None, campaign.searchspace.discrete.exp_rep.reset_index()),) else: groups = campaign.searchspace.discrete.exp_rep.reset_index().groupby(groupby) # Simulate all subgroups dfs = [] for group_id, group in groups: # Create a campaign that focuses only on the current group by excluding # off-group configurations from the candidates list # TODO: Reconsider if deepcopies are required once [16605] is resolved campaign_group = deepcopy(campaign) # TODO: Implement SubspaceDiscrete.__len__ off_group_idx = np.full( len(campaign.searchspace.discrete.exp_rep), fill_value=True, dtype=bool ) off_group_idx[group.index.values] = False # TODO [16605]: Avoid direct manipulation of metadata campaign_group.searchspace.discrete.metadata.loc[ off_group_idx, "dont_recommend" ] = True # Run the group simulation try: df_group = simulate_experiment( campaign_group, lookup, batch_size=batch_size, n_doe_iterations=n_doe_iterations, initial_data=initial_data, random_seed=random_seed, impute_mode=impute_mode, noise_percent=noise_percent, ) except NothingToSimulateError: continue # Add the group columns if groupby is not None: group_tuple = group_id if isinstance(group_id, tuple) else (group_id,) context = pd.DataFrame([group_tuple], columns=groupby, index=df_group.index) df_group = pd.concat([context, df_group], axis=1) dfs.append(df_group) # Collect all results if len(dfs) == 0: raise NothingToSimulateError df = pd.concat(dfs, ignore_index=True) return df