Source code for baybe.surrogates.gaussian_process.presets.default

"""Default preset for Gaussian process surrogates."""

from __future__ import annotations

import gc
from typing import TYPE_CHECKING

import numpy as np
from attrs import define

from baybe.kernels.basic import MaternKernel
from baybe.kernels.composite import ScaleKernel
from baybe.parameters import TaskParameter
from baybe.priors.basic import GammaPrior
from baybe.surrogates.gaussian_process.kernel_factory import KernelFactory

if TYPE_CHECKING:
    from torch import Tensor

    from baybe.kernels.base import Kernel
    from baybe.searchspace.core import SearchSpace

# Boundaries for low and high dimension limits
_DIM_LIMITS = (8, 75)


[docs] @define class DefaultKernelFactory(KernelFactory): """A factory providing the default kernel for Gaussian process surrogates. This is taking the low and high dimensional limits of :class:`baybe.surrogates.gaussian_process.presets.edbo.EDBOKernelFactory` and interpolates the prior moments linearly between them. """ def __call__( # noqa: D102 self, searchspace: SearchSpace, train_x: Tensor, train_y: Tensor ) -> Kernel: # See base class. effective_dims = train_x.shape[-1] - len( [p for p in searchspace.parameters if isinstance(p, TaskParameter)] ) # Interpolate prior moments linearly between low D and high D regime # The high D regime itself is the average of the EDBO OHE and Mordred regime # Values outside the dimension limits will get the border value assigned lengthscale_prior = GammaPrior( np.interp(effective_dims, _DIM_LIMITS, [1.2, 2.5]), np.interp(effective_dims, _DIM_LIMITS, [1.1, 0.55]), ) lengthscale_initial_value = np.interp(effective_dims, _DIM_LIMITS, [0.2, 6.0]) outputscale_prior = GammaPrior( np.interp(effective_dims, _DIM_LIMITS, [5.0, 3.5]), np.interp(effective_dims, _DIM_LIMITS, [0.5, 0.15]), ) outputscale_initial_value = np.interp(effective_dims, _DIM_LIMITS, [8.0, 15.0]) return ScaleKernel( MaternKernel( nu=2.5, lengthscale_prior=lengthscale_prior, lengthscale_initial_value=lengthscale_initial_value, ), outputscale_prior=outputscale_prior, outputscale_initial_value=outputscale_initial_value, )
def _default_noise_factory( searchspace: SearchSpace, train_x: Tensor, train_y: Tensor ) -> tuple[GammaPrior, float]: """Create the default noise settings for the Gaussian process surrogate. This is taking the low and high dimensional limits of :func:`baybe.surrogates.gaussian_process.presets.edbo._edbo_noise_factory` and interpolates the prior moments linearly between them. """ # TODO: Replace this function with a proper likelihood factory # Interpolate prior moments linearly between low D and high D regime # The high D regime itself is the average of the EDBO OHE and Mordred regime # Values outside the dimension limits will get the border value assigned effective_dims = train_x.shape[-1] - len( [p for p in searchspace.parameters if isinstance(p, TaskParameter)] ) return ( GammaPrior( np.interp(effective_dims, _DIM_LIMITS, [1.05, 1.5]), np.interp(effective_dims, _DIM_LIMITS, [0.5, 0.1]), ), np.interp(effective_dims, _DIM_LIMITS, [0.1, 5.0]).item(), ) # Collect leftover original slotted classes processed by `attrs.define` gc.collect()