# Creating Continuous Search Spaces This example illustrates several ways to create continuous spaces space. ## Imports ```python import numpy as np ``` ```python from baybe.parameters import NumericalContinuousParameter from baybe.searchspace import SearchSpace, SubspaceContinuous ``` ## Settings We begin by defining the continuous parameters that span our space: ```python DIMENSION = 4 BOUNDS = (-1, 1) ``` ```python parameters = [ NumericalContinuousParameter(name=f"x_{k+1}", bounds=BOUNDS) for k in range(DIMENSION) ] ``` From these parameter objects, we can now construct a continuous subspace. Let us draw some samples from it and verify that they are within the bounds: ```python subspace = SubspaceContinuous(parameters) samples = subspace.sample_uniform(10) print(samples) assert np.all(samples >= BOUNDS[0]) and np.all(samples <= BOUNDS[1]) ``` x_1 x_2 x_3 x_4 0 0.230247 0.416424 -0.899843 0.881504 1 0.576359 0.233881 -0.220176 -0.383097 2 0.675898 -0.896636 -0.914122 0.056686 3 0.154839 -0.902841 0.675562 0.260128 4 0.428907 0.945387 -0.959041 -0.411921 5 0.139609 -0.985700 -0.133900 0.111305 6 0.903027 0.107034 0.043616 0.116418 7 0.241256 0.010712 -0.716105 -0.501905 8 -0.644057 0.189839 -0.017273 0.516667 9 0.257456 0.689105 0.301056 -0.755482 There are several ways we can turn the above objects into a search space. This provides a lot of flexibility depending on the context: ```python # Using conversion: searchspace1 = SubspaceContinuous(parameters).to_searchspace() ``` ```python # Explicit attribute assignment via the regular search space constructor: searchspace2 = SearchSpace(continuous=SubspaceContinuous(parameters)) ``` ```python # Using an alternative search space constructor: searchspace3 = SearchSpace.from_product(parameters=parameters) ``` No matter which version we choose, we can be sure that the resulting search space objects are equivalent: ```python assert searchspace1 == searchspace2 == searchspace3 ```