# Creating Continuous Search Spaces This example illustrates several ways to create continuous spaces space. ## Imports ```python import numpy as np ``` ```python from baybe.parameters import NumericalContinuousParameter from baybe.searchspace import SearchSpace, SubspaceContinuous ``` ## Settings We begin by defining the continuous parameters that span our space: ```python DIMENSION = 4 BOUNDS = (-1, 1) ``` ```python parameters = [ NumericalContinuousParameter(name=f"x_{k + 1}", bounds=BOUNDS) for k in range(DIMENSION) ] ``` From these parameter objects, we can now construct a continuous subspace. Let us draw some samples from it and verify that they are within the bounds: ```python subspace = SubspaceContinuous(parameters) samples = subspace.sample_uniform(10) print(samples) assert np.all(samples >= BOUNDS[0]) and np.all(samples <= BOUNDS[1]) ``` x_1 x_2 x_3 x_4 0 0.973791 -0.986706 0.019650 0.303580 1 -0.930456 0.242254 0.743866 0.354581 2 0.889465 -0.052766 0.726727 0.764611 3 -0.235213 -0.785265 -0.915693 -0.957597 4 -0.860714 -0.209587 -0.640210 0.374083 5 -0.934856 0.743801 0.093946 0.124057 6 -0.428927 -0.595116 0.304880 -0.451094 7 -0.894510 0.899066 -0.262835 0.593469 8 -0.734076 -0.067086 0.407055 -0.279665 9 -0.935984 -0.477448 -0.094114 0.929116 There are several ways we can turn the above objects into a search space. This provides a lot of flexibility depending on the context: ```python # Using conversion: searchspace1 = SubspaceContinuous(parameters).to_searchspace() ``` ```python # Explicit attribute assignment via the regular search space constructor: searchspace2 = SearchSpace(continuous=SubspaceContinuous(parameters)) ``` ```python # Using an alternative search space constructor: searchspace3 = SearchSpace.from_product(parameters=parameters) ``` No matter which version we choose, we can be sure that the resulting search space objects are equivalent: ```python assert searchspace1 == searchspace2 == searchspace3 ```