# Creating Continuous Search Spaces This example illustrates several ways to create continuous spaces space. ## Imports ```python import numpy as np ``` ```python from baybe.parameters import NumericalContinuousParameter from baybe.searchspace import SearchSpace, SubspaceContinuous ``` ## Settings We begin by defining the continuous parameters that span our space: ```python DIMENSION = 4 BOUNDS = (-1, 1) ``` ```python parameters = [ NumericalContinuousParameter(name=f"x_{k + 1}", bounds=BOUNDS) for k in range(DIMENSION) ] ``` From these parameter objects, we can now construct a continuous subspace. Let us draw some samples from it and verify that they are within the bounds: ```python subspace = SubspaceContinuous(parameters) samples = subspace.sample_uniform(10) print(samples) assert np.all(samples >= BOUNDS[0]) and np.all(samples <= BOUNDS[1]) ``` x_1 x_2 x_3 x_4 0 -0.180765 -0.598004 -0.984620 -0.143440 1 -0.473118 0.818037 -0.229118 -0.582938 2 -0.587032 0.824386 -0.799557 -0.749132 3 0.613293 0.988032 0.209141 -0.785445 4 -0.941424 -0.544421 0.555680 -0.917139 5 0.126410 -0.710426 -0.295248 -0.840695 6 -0.987953 0.826167 -0.765348 0.821035 7 0.810785 -0.446940 0.677294 -0.292025 8 0.392259 0.863989 -0.087664 -0.965272 9 -0.840971 -0.882327 -0.248995 0.069998 There are several ways we can turn the above objects into a search space. This provides a lot of flexibility depending on the context: ```python # Using conversion: searchspace1 = SubspaceContinuous(parameters).to_searchspace() ``` ```python # Explicit attribute assignment via the regular search space constructor: searchspace2 = SearchSpace(continuous=SubspaceContinuous(parameters)) ``` ```python # Using an alternative search space constructor: searchspace3 = SearchSpace.from_product(parameters=parameters) ``` No matter which version we choose, we can be sure that the resulting search space objects are equivalent: ```python assert searchspace1 == searchspace2 == searchspace3 ```