# Creating Continuous Search Spaces This example illustrates several ways to create continuous spaces space. ## Imports ```python import numpy as np ``` ```python from baybe.parameters import NumericalContinuousParameter from baybe.searchspace import SearchSpace, SubspaceContinuous ``` ## Settings We begin by defining the continuous parameters that span our space: ```python DIMENSION = 4 BOUNDS = (-1, 1) ``` ```python parameters = [ NumericalContinuousParameter(name=f"x_{k + 1}", bounds=BOUNDS) for k in range(DIMENSION) ] ``` From these parameter objects, we can now construct a continuous subspace. Let us draw some samples from it and verify that they are within the bounds: ```python subspace = SubspaceContinuous(parameters) samples = subspace.sample_uniform(10) print(samples) assert np.all(samples >= BOUNDS[0]) and np.all(samples <= BOUNDS[1]) ``` x_1 x_2 x_3 x_4 0 -0.657925 -0.449926 0.644716 0.666811 1 -0.305675 -0.133885 -0.415179 -0.144869 2 0.117462 0.044651 -0.456064 0.598598 3 -0.303347 -0.938454 0.692164 -0.916760 4 -0.297150 -0.709411 0.465011 0.404464 5 0.956274 0.362860 -0.011565 0.602300 6 0.370266 -0.110847 0.646062 -0.537952 7 -0.192416 -0.937654 -0.732442 -0.948462 8 -0.841857 0.082312 -0.408335 -0.187503 9 0.633939 0.288728 0.001924 -0.643819 There are several ways we can turn the above objects into a search space. This provides a lot of flexibility depending on the context: ```python # Using conversion: searchspace1 = SubspaceContinuous(parameters).to_searchspace() ``` ```python # Explicit attribute assignment via the regular search space constructor: searchspace2 = SearchSpace(continuous=SubspaceContinuous(parameters)) ``` ```python # Using an alternative search space constructor: searchspace3 = SearchSpace.from_product(parameters=parameters) ``` No matter which version we choose, we can be sure that the resulting search space objects are equivalent: ```python assert searchspace1 == searchspace2 == searchspace3 ```