# Example for surrogate model with a custom pretrained model This example shows how to pre-train a model and use it as a surrogate. Please note that the model is not designed to be useful but to demonstrate the workflow. This example assumes some basic familiarity with using BayBE. We thus refer to [`campaign`](./../Basics/campaign.md) for a basic example. ## Necessary imports ```python import numpy as np import torch from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType from skl2onnx.operator_converters.linear_regressor import convert_sklearn_bayesian_ridge from sklearn.linear_model import BayesianRidge ``` ```python from baybe.campaign import Campaign from baybe.objectives import SingleTargetObjective from baybe.parameters import NumericalDiscreteParameter from baybe.recommenders import ( BotorchRecommender, FPSRecommender, TwoPhaseMetaRecommender, ) from baybe.searchspace import SearchSpace from baybe.surrogates import CustomONNXSurrogate from baybe.targets import NumericalTarget from baybe.utils.dataframe import add_fake_measurements, to_tensor ``` ## Experiment Setup ```python parameters = [ NumericalDiscreteParameter( name="Pressure[bar]", values=[1, 5, 10], tolerance=0.2, ), NumericalDiscreteParameter( name="Temperature[degree_C]", values=np.linspace(100, 200, 10), ), ] ``` ## "Pre-training" stage Note that this example trains with several helpers built-in to BayBE. This can be done independently (and elsewhere). The only requirement that BayBE needs is that the model is in an onnx format. And The format should return both the mean and standard deviation. This example is based on a `BayesianRidge` regressor from `sklearn`. Its native conversion to onnx is supported via `skl2onnx`. Please also note that this example does not give a useful model. Its purpose is to show the workflow for using pre-trained surrogates in BayBE. ```python searchspace = SearchSpace.from_product(parameters=parameters, constraints=None) train_x = to_tensor(searchspace.discrete.comp_rep) train_y = torch.rand(train_x.size(dim=0)) # train with a random y vector ``` Define model and fit ```python model = BayesianRidge() model.fit(train_x, train_y) ```
BayesianRidge()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Convert model to onnx Need the option to return standard deviation ```python options = {type(model): {"return_std": True}} ``` Specify what the input name is ```python ONNX_INPUT_NAME = "example_input_name" ``` input dimensions and input type (should always be a float) ```python input_dim = train_x.size(dim=1) initial_type = [(ONNX_INPUT_NAME, FloatTensorType([None, input_dim]))] ``` Conversion ```python onnx_str = convert_sklearn( model, initial_types=initial_type, options=options, custom_conversion_functions={type(model): convert_sklearn_bayesian_ridge}, ).SerializeToString() # serialize to string to save in file ``` ## Create a surrogate model with a pretrained model ```python surrogate_model = CustomONNXSurrogate( onnx_str=onnx_str, onnx_input_name=ONNX_INPUT_NAME, # specify input name ) ``` ## Create campaign ```python campaign = Campaign( searchspace=SearchSpace.from_product(parameters=parameters, constraints=None), objective=SingleTargetObjective(target=NumericalTarget(name="Yield", mode="MAX")), recommender=TwoPhaseMetaRecommender( recommender=BotorchRecommender(surrogate_model=surrogate_model), initial_recommender=FPSRecommender(), ), ) ``` ## Iterate with recommendations and measurements ```python # Let's do a first round of recommendation recommendation = campaign.recommend(batch_size=1) ``` ```python print("Recommendation from campaign:") print(recommendation) ``` Recommendation from campaign: Pressure[bar] Temperature[degree_C] 0 1.0 100.0 Add some fake results ```python add_fake_measurements(recommendation, campaign.targets) campaign.add_measurements(recommendation) ``` ## Model Outputs ```python # Do another round of recommendation recommendation = campaign.recommend(batch_size=1) ``` Print second round of recommendation ```python print("Recommendation from campaign:") print(recommendation) ``` Recommendation from campaign: Pressure[bar] Temperature[degree_C] index 4 10.0 100.0 ## Using configuration instead Note that this can be placed inside an overall baybe config Refer to [`create_from_config`](./../Serialization/create_from_config.md) for an example ```python CONFIG = { "type": "CustomONNXSurrogate", "onnx_str": onnx_str, "onnx_input_name": ONNX_INPUT_NAME, } ``` ```python ### Model creation from dict (or json if string) model_from_python = CustomONNXSurrogate( onnx_str=onnx_str, onnx_input_name=ONNX_INPUT_NAME ) model_from_configs = CustomONNXSurrogate.from_dict(CONFIG) ``` This configuration creates the same model ```python assert model_from_python == model_from_configs ``` JSON configuration (expects onnx_str to be decoded with `ISO-8859-1`) ```python model_json = model_from_python.to_json() assert model_from_python == CustomONNXSurrogate.from_json(model_json) ```