CustomDiscreteParameter

class baybe.parameters.custom.CustomDiscreteParameter[source]

Bases: DiscreteParameter

Custom parameters.

For these parameters, the user can read in a precomputed representation for labels, e.g. from quantum chemistry.

Public methods

__init__(name, data[, decorrelate])

Method generated by attrs for class CustomDiscreteParameter.

from_dict(dictionary)

Create an object from its dictionary representation.

from_json(string)

Create an object from its JSON representation.

is_in_range(item)

Return whether an item is within the parameter range.

summary()

Return a custom summarization of the parameter.

to_dict()

Create an object's dictionary representation.

to_json()

Create an object's JSON representation.

to_searchspace()

Create a one-dimensional search space from the parameter.

to_subspace()

Create a one-dimensional search space from the parameter.

transform(series, /)

Transform parameter values to computational representation.

Public attributes and properties

comp_df

Return the computational representation of the parameter.

comp_rep_columns

The columns spanning the computational representation.

is_continuous

Boolean indicating if this is a continuous parameter.

is_discrete

Boolean indicating if this is a discrete parameter.

is_numerical

Class variable encoding whether this parameter is numeric.

values

Returns the representing labels of the parameter.

data

A mapping that provides the encoding for all available parameter values.

decorrelate

Specifies the used decorrelation mode for the parameter encoding.

encoding

An optional encoding for the parameter.

name

The name of the parameter

__init__(name: str, data: DataFrame, decorrelate: bool | float = True)

Method generated by attrs for class CustomDiscreteParameter.

For details on the parameters, see Public attributes and properties.

classmethod from_dict(dictionary: dict)

Create an object from its dictionary representation.

Parameters:

dictionary (dict) – The dictionary representation.

Return type:

TypeVar(_T)

Returns:

The reconstructed object.

classmethod from_json(string: str)

Create an object from its JSON representation.

Parameters:

string (str) – The JSON representation of the object.

Return type:

TypeVar(_T)

Returns:

The reconstructed object.

is_in_range(item: Any)

Return whether an item is within the parameter range.

Parameters:

item (Any) – The item to be checked.

Return type:

bool

Returns:

True if the item is within the parameter range, False otherwise.

summary()

Return a custom summarization of the parameter.

Return type:

dict

to_dict()

Create an object’s dictionary representation.

Return type:

dict

to_json()

Create an object’s JSON representation.

Return type:

str

Returns:

The JSON representation as a string.

to_searchspace()

Create a one-dimensional search space from the parameter.

Return type:

SearchSpace

to_subspace()

Create a one-dimensional search space from the parameter.

Return type:

SubspaceDiscrete

transform(series: Series, /)

Transform parameter values to computational representation.

Parameters:

series (Series) – The parameter values in experimental representation to be transformed.

Return type:

DataFrame

Returns:

A series containing the transformed values. The series name matches that of the input.

property comp_df: DataFrame

Return the computational representation of the parameter.

property comp_rep_columns: tuple[str, ...]

The columns spanning the computational representation.

data: DataFrame

A mapping that provides the encoding for all available parameter values.

decorrelate: bool | float

Specifies the used decorrelation mode for the parameter encoding.

  • False: The encoding is used as is.

  • True: The encoding is decorrelated using a default correlation threshold.

  • float in (0, 1): The encoding is decorrelated using the specified threshold.

encoding: CustomEncoding

An optional encoding for the parameter.

property is_continuous: bool

Boolean indicating if this is a continuous parameter.

property is_discrete: bool

Boolean indicating if this is a discrete parameter.

is_numerical: ClassVar[bool] = False

Class variable encoding whether this parameter is numeric.

name: str

The name of the parameter

property values: tuple

Returns the representing labels of the parameter.