baybe.simulation.scenarios.simulate_scenarios

baybe.simulation.scenarios.simulate_scenarios(scenarios: dict[Any, Campaign], lookup: DataFrame | Callable[[DataFrame], DataFrame] | None = None, /, *, batch_size: int = 1, n_doe_iterations: int | None = None, initial_data: list[DataFrame] | None = None, groupby: list[str] | None = None, n_mc_iterations: int = 1, random_seed: int | None = None, impute_mode: Literal['error', 'worst', 'best', 'mean', 'random', 'ignore'] = 'error', noise_percent: float | None = None)[source]

Simulate multiple Bayesian optimization scenarios.

A wrapper function around baybe.simulation.core.simulate_experiment() that allows to specify multiple simulation settings at once.

Parameters:
Return type:

DataFrame

Returns:

A dataframe like returned from baybe.simulation.core.simulate_experiment() but with additional columns. See the Note for details.

Note

The following additional columns are contained in the dataframe returned by this function:

  • Scenario: Specifies the scenario identifier of the respective simulation.

  • Monte_Carlo_Run: Specifies the Monte Carlo repetition of the respective simulation.

  • Optional, if random_seed is provided: A column Random_Seed that specifies the random seed used for the respective simulation.

  • Optional, if initial_data is provided: A column Initial_Data that specifies the index of the initial data set used for the respective simulation.

  • Optional, if groupby is provided: A column for each groupby parameter that specifies the search space partition considered for the respective simulation.