DiscreteLinkedParametersConstraint

class baybe.constraints.discrete.DiscreteLinkedParametersConstraint[source]

Bases: DiscreteConstraint

Constraint class for linking the values of parameters.

This constraint type effectively allows generating parameter sets that relate to the same underlying quantity, e.g. two parameters that represent the same molecule using different encodings. Linking the parameters removes all entries from the search space where the parameter values differ.

Public methods

__init__(parameters)

Method generated by attrs for class DiscreteConstraint.

from_dict(dictionary)

Create an object from its dictionary representation.

from_json(string)

Create an object from its JSON representation.

get_invalid(data)

Get the indices of dataframe entries that are invalid under the constraint.

get_invalid_polars()

Translate the constraint to Polars expression identifying undesired rows.

summary()

Return a custom summarization of the constraint.

to_dict()

Create an object's dictionary representation.

to_json()

Create an object's JSON representation.

Public attributes and properties

eval_during_augmentation

Class variable encoding whether the constraint could be considered during data augmentation.

eval_during_creation

Class variable encoding whether the condition is evaluated during creation.

eval_during_modeling

Class variable encoding whether the condition is evaluated during modeling.

is_continuous

Boolean indicating if this is a constraint over continuous parameters.

is_discrete

Boolean indicating if this is a constraint over discrete parameters.

numerical_only

Class variable encoding whether the constraint is valid only for numerical parameters.

parameters

The list of parameters used for the constraint.

__init__(parameters: list[str])

Method generated by attrs for class DiscreteConstraint.

For details on the parameters, see Public attributes and properties.

classmethod from_dict(dictionary: dict)

Create an object from its dictionary representation.

Parameters:

dictionary (dict) – The dictionary representation.

Return type:

TypeVar(_T)

Returns:

The reconstructed object.

classmethod from_json(string: str)

Create an object from its JSON representation.

Parameters:

string (str) – The JSON representation of the object.

Return type:

TypeVar(_T)

Returns:

The reconstructed object.

get_invalid(data: DataFrame)[source]

Get the indices of dataframe entries that are invalid under the constraint.

Parameters:

data (DataFrame) – A dataframe where each row represents a particular parameter combination.

Return type:

Index

Returns:

The dataframe indices of rows where the constraint is violated.

get_invalid_polars()[source]

Translate the constraint to Polars expression identifying undesired rows.

Return type:

pl.Expr

Returns:

The Polars expressions to pass to polars.LazyFrame.filter().

Raises:

NotImplementedError – If the constraint class does not have a Polars implementation.

summary()

Return a custom summarization of the constraint.

Return type:

dict

to_dict()

Create an object’s dictionary representation.

Return type:

dict

to_json()

Create an object’s JSON representation.

Return type:

str

Returns:

The JSON representation as a string.

eval_during_augmentation: ClassVar[bool] = False

Class variable encoding whether the constraint could be considered during data augmentation.

eval_during_creation: ClassVar[bool] = True

Class variable encoding whether the condition is evaluated during creation.

eval_during_modeling: ClassVar[bool] = False

Class variable encoding whether the condition is evaluated during modeling.

property is_continuous: bool

Boolean indicating if this is a constraint over continuous parameters.

property is_discrete: bool

Boolean indicating if this is a constraint over discrete parameters.

numerical_only: ClassVar[bool] = False

Class variable encoding whether the constraint is valid only for numerical parameters.

parameters: list[str]

The list of parameters used for the constraint.