SearchSpace¶
- class baybe.searchspace.core.SearchSpace[source]¶
Bases:
SerialMixin
Class for managing the overall search space.
The search space might be purely discrete, purely continuous, or hybrid. Note that created objects related to the computational representations of parameters (e.g., parameter bounds, computational dataframes, etc.) may use a different parameter order than what is specified through the constructor: While the passed parameter list can contain parameters in arbitrary order, the aforementioned objects (by convention) list discrete parameters first, followed by continuous ones.
Public methods
__init__
([discrete, continuous])Method generated by attrs for class SearchSpace.
estimate_product_space_size
(parameters)Estimate an upper bound for the memory size of a product space.
from_dataframe
(df, parameters)Create a search space from a specified set of parameter configurations.
from_dict
(dictionary)Create an object from its dictionary representation.
from_json
(string)Create an object from its JSON representation.
from_parameter
(parameter)Create a search space from a single parameter.
from_product
(parameters[, constraints, ...])Create a search space from a cartesian product.
get_comp_rep_parameter_indices
(name, /)Find a parameter's column indices in the computational representation.
get_parameters_by_name
(names)Return parameters with the specified names.
to_dict
()Create an object's dictionary representation.
to_json
()Create an object's JSON representation.
transform
([df, allow_missing, allow_extra, data])Transform parameters from experimental to computational representation.
Public attributes and properties
The (potentially empty) discrete subspace of the overall search space.
The (potentially empty) continuous subspace of the overall search space.
The minimum and maximum values of the computational representation.
The columns spanning the computational representation.
Return the constraints of the search space.
The searchspace constraints that can be considered during augmentation.
Indicates if any of the discrete parameters uses
MORDRED
encoding.Indicates if any of the discrete parameters uses
RDKIT
encoding.The number of tasks encoded in the search space.
Return tuple of parameter names.
Return the list of parameters of the search space.
The column index of the task parameter in computational representation.
Return the type of the search space.
- __init__(discrete: SubspaceDiscrete = NOTHING, continuous: SubspaceContinuous = NOTHING)¶
Method generated by attrs for class SearchSpace.
For details on the parameters, see Public attributes and properties.
- static estimate_product_space_size(parameters: Iterable[Parameter])[source]¶
Estimate an upper bound for the memory size of a product space.
Continuous parameters are ignored because creating a continuous subspace has no considerable memory footprint.
- classmethod from_dataframe(df: DataFrame, parameters: Sequence[Parameter])[source]¶
Create a search space from a specified set of parameter configurations.
The way in which the contents of the columns are interpreted depends on the types of the corresponding parameter objects provided. For details, see
baybe.searchspace.discrete.SubspaceDiscrete.from_dataframe()
andbaybe.searchspace.continuous.SubspaceContinuous.from_dataframe()
.- Parameters:
- Return type:
- Returns:
The created search space.
- Raises:
ValueError – If the dataframe columns do not match with the parameters.
- classmethod from_parameter(parameter: Parameter)[source]¶
Create a search space from a single parameter.
- Parameters:
parameter (
Parameter
) – The parameter to span the search space.- Return type:
- Returns:
The created search space.
- classmethod from_product(parameters: Sequence[Parameter], constraints: Sequence[Constraint] | None = None, empty_encoding: bool = False)[source]¶
Create a search space from a cartesian product.
In the search space, optional subsequent constraints are applied. That is, the discrete subspace becomes the (filtered) cartesian product containing all discrete parameter combinations while, analogously, the continuous subspace represents the (filtered) cartesian product of all continuous parameters.
- Parameters:
parameters (
Sequence
[Parameter
]) – The parameters spanning the search space.constraints (
Optional
[Sequence
[Constraint
]]) – An optional set of constraints restricting the valid parameter space.empty_encoding (
bool
) – IfTrue
, uses an “empty” encoding for all parameters. This is useful, for instance, in combination with random search strategies that do not read the actual parameter values, since it avoids the (potentially costly) transformation of the parameter values to their computational representation.
- Return type:
- Returns:
The constructed search space.
- get_comp_rep_parameter_indices(name: str, /)[source]¶
Find a parameter’s column indices in the computational representation.
- Parameters:
name (
str
) – The name of the parameter whose columns indices are to be retrieved.- Raises:
ValueError – If no parameter with the provided name exists.
- Return type:
- Returns:
A tuple containing the integer indices of the columns in the computational representation associated with the parameter. When the parameter is not part of the computational representation, an empty tuple is returned.
- to_json()¶
Create an object’s JSON representation.
- Return type:
- Returns:
The JSON representation as a string.
- transform(df: DataFrame | None = None, /, *, allow_missing: bool = False, allow_extra: bool | None = None, data: DataFrame | None = None)[source]¶
Transform parameters from experimental to computational representation.
- Parameters:
df (
Optional
[DataFrame
]) – The dataframe to be transformed. The allowed columns of the dataframe are dictated by theallow_missing
andallow_extra
flags. TheNone
default value is for temporary backward compatibility only and will be removed in a future version.allow_missing (
bool
) – IfFalse
, each parameter of the space must have (exactly) one corresponding column in the given dataframe. IfTrue
, the dataframe may contain only a subset of parameter columns.allow_extra (
Optional
[bool
]) – IfFalse
, every column present in the dataframe must correspond to (exactly) one parameter of the space. IfTrue
, the dataframe may contain additional non-parameter-related columns, which will be ignored. TheNone
default value is for temporary backward compatibility only and will be removed in a future version.data (
Optional
[DataFrame
]) – Ignore! For backward compatibility only.
- Raises:
ValueError – If dataframes are passed to both
df
anddata
.- Return type:
- Returns:
A corresponding dataframe with parameters in computational representation.
- property comp_rep_bounds: DataFrame¶
The minimum and maximum values of the computational representation.
- property constraints: tuple[Constraint, ...]¶
Return the constraints of the search space.
- property constraints_augmentable: tuple[Constraint, ...]¶
The searchspace constraints that can be considered during augmentation.
-
continuous:
SubspaceContinuous
¶ The (potentially empty) continuous subspace of the overall search space.
-
discrete:
SubspaceDiscrete
¶ The (potentially empty) discrete subspace of the overall search space.
- property task_idx: int | None¶
The column index of the task parameter in computational representation.
- property type: SearchSpaceType¶
Return the type of the search space.