Source code for baybe.objectives.desirability

"""Functionality for desirability objectives."""

from collections.abc import Callable
from functools import cached_property, partial
from typing import TypeGuard

import cattrs
import numpy as np
import numpy.typing as npt
import pandas as pd
from attrs import define, field
from attrs.validators import deep_iterable, gt, instance_of, min_len

from baybe.objectives.base import Objective
from baybe.objectives.enum import Scalarizer
from baybe.targets.base import Target
from baybe.targets.numerical import NumericalTarget
from baybe.utils.basic import to_tuple
from baybe.utils.dataframe import pretty_print_df
from baybe.utils.numerical import geom_mean
from baybe.utils.plotting import to_string
from baybe.utils.validation import finite_float


def _is_all_numerical_targets(
    x: tuple[Target, ...], /
) -> TypeGuard[tuple[NumericalTarget, ...]]:
    """Typeguard helper function."""
    return all(isinstance(y, NumericalTarget) for y in x)


[docs] def scalarize( values: npt.ArrayLike, scalarizer: Scalarizer, weights: npt.ArrayLike ) -> np.ndarray: """Scalarize the rows of a 2-D array, producing a 1-D array. Args: values: The 2-D array whose rows are to be scalarized. scalarizer: The scalarization mechanism to be used. weights: Weights for the columns of the input array. Raises: ValueError: If the provided array is not two-dimensional. NotImplementedError: If the requested scalarizer is not implemented. Returns: np.ndarray: A 1-D array containing the scalarized values. """ if np.ndim(values) != 2: raise ValueError("The provided array must be two-dimensional.") func: Callable if scalarizer is Scalarizer.GEOM_MEAN: func = geom_mean elif scalarizer is Scalarizer.MEAN: func = partial(np.average, axis=1) else: raise NotImplementedError( f"No scalarization mechanism defined for '{scalarizer.name}'." ) return func(values, weights=weights)
[docs] @define(frozen=True, slots=False) class DesirabilityObjective(Objective): """An objective scalarizing multiple targets using desirability values.""" _targets: tuple[Target, ...] = field( converter=to_tuple, validator=[min_len(2), deep_iterable(member_validator=instance_of(Target))], alias="targets", ) "The targets considered by the objective." weights: tuple[float, ...] = field( converter=lambda w: cattrs.structure(w, tuple[float, ...]), validator=deep_iterable(member_validator=[finite_float, gt(0.0)]), ) """The weights to balance the different targets. By default, all targets are considered equally important.""" scalarizer: Scalarizer = field(default=Scalarizer.GEOM_MEAN, converter=Scalarizer) """The mechanism to scalarize the weighted desirability values of all targets.""" @weights.default def _default_weights(self) -> tuple[float, ...]: """Create unit weights for all targets.""" return tuple(1.0 for _ in range(len(self.targets))) @_targets.validator def _validate_targets(self, _, targets) -> None: # noqa: DOC101, DOC103 if not _is_all_numerical_targets(targets): raise TypeError( f"'{self.__class__.__name__}' currently only supports targets " f"of type '{NumericalTarget.__name__}'." ) if len({t.name for t in targets}) != len(targets): raise ValueError("All target names must be unique.") if not all(target._is_transform_normalized for target in targets): raise ValueError( "All targets must have normalized computational representations to " "enable the computation of desirability values. This requires having " "appropriate target bounds and transformations in place." ) @weights.validator def _validate_weights(self, _, weights) -> None: # noqa: DOC101, DOC103 if (lw := len(weights)) != (lt := len(self.targets)): raise ValueError( f"If custom weights are specified, there must be one for each target. " f"Specified number of targets: {lt}. Specified number of weights: {lw}." ) @property def targets(self) -> tuple[Target, ...]: # noqa: D102 # See base class. return self._targets @cached_property def _normalized_weights(self) -> np.ndarray: """The normalized target weights.""" return np.asarray(self.weights) / np.sum(self.weights) def __str__(self) -> str: targets_list = [target.summary() for target in self.targets] targets_df = pd.DataFrame(targets_list) targets_df["Weight"] = self.weights fields = [ to_string("Type", self.__class__.__name__, single_line=True), to_string("Targets", pretty_print_df(targets_df)), to_string("Scalarizer", self.scalarizer.name, single_line=True), ] return to_string("Objective", *fields)
[docs] def transform(self, data: pd.DataFrame) -> pd.DataFrame: # noqa: D102 # See base class. # Transform all targets individually transformed = data[[t.name for t in self.targets]].copy() for target in self.targets: transformed[target.name] = target.transform(data[[target.name]]) # Scalarize the transformed targets into desirability values vals = scalarize(transformed.values, self.scalarizer, self._normalized_weights) # Store the total desirability in a dataframe column transformed = pd.DataFrame({"Desirability": vals}, index=transformed.index) return transformed