baybe.acquisition.utils.make_partitioning

baybe.acquisition.utils.make_partitioning(predictions: Tensor, ref_point: Tensor, alpha: float | None)[source]

Create a BoxDecomposition object for the given predictions and reference point.

For details on the arguments, see NondominatedPartitioning.

Parameters:
  • predictions (Tensor) – The predictions tensor of shape (n_samples, n_outputs).

  • ref_point (Tensor) – The reference point tensor of shape (n_outputs,).

  • alpha (float | None) – Optional threshold parameter controlling the partitioning generation. Hypercells with a volume fraction (relative to the total Pareto set hypervolume) less than the specified value will be dropped, leading to more approximation but faster computation.

Raises:

ValueError – If the predictions or reference point do not have the expected shapes.

Return type:

BoxDecomposition

Returns:

A partitioning object for hypervolume acquisition functions.