User Guide¶ Campaigns Creating a campaign Basic creation Creation from a JSON config Getting recommendations Basics Caching of recommendations Adding measurements Serialization Further information Active Learning Local Uncertainty Reduction Global Uncertainty Reduction Asynchronous Workflows Marking Experiments as Pending Adding Partial Results Constraints Continuous Constraints ContinuousLinearConstraint Conditions ThresholdCondition SubSelectionCondition Discrete Constraints DiscreteExcludeConstraint DiscreteSumConstraint and DiscreteProductConstraint DiscreteNoLabelDuplicatesConstraint DiscreteLinkedParametersConstraint DiscreteDependenciesConstraint DiscretePermutationInvarianceConstraint DiscreteCustomConstraint Environment Vars Basic Instructions Telemetry Polars Disk Caching Floating Point Precision Objectives SingleTargetObjective DesirabilityObjective Parameters Continuous Parameters NumericalContinuousParameter Discrete Parameters NumericalDiscreteParameter CategoricalParameter SubstanceParameter CustomDiscreteParameter TaskParameter Recommenders General Information Pure Recommenders Bayesian Recommenders Clustering Recommenders Sampling Recommenders Meta Recommenders Search Spaces Discrete Subspaces Building from the Product of Parameter Values Constructing from a Dataframe Creating a Simplex-Bound Discrete Subspace Representation of Data within Discrete Subspaces Metadata Continuous Subspaces Using Explicit Bounds Constructing from a Dataframe Constructing Full Search Spaces From the Default Constructor Building from the Product of Parameter Values Constructing from a Dataframe Restricting Search Spaces Using Constraints Serialization JSON de-/serialization Deserialization from configuration strings Basic string assembly Using default values Automatic field conversion The type field Using abbreviations Nesting objects Invoking alternative constructors Dataframe deserialization Simulation Terminology: What do we mean by “Simulation”? The Lookup Functionality Using a Dataframe Using a Callable Simulating a Single Experiment Simulating Multiple Scenarios Simulating Transfer Learning Surrogates Available Models Extracting the Model for Advanced Study Using Custom Models Targets NumericalTarget MIN and MAX mode MATCH mode Limitations Transfer Learning Unlocking Data Treasures Through Transfer Learning The Role of the TaskParameter Seeing Transfer Learning in Action Utilities Search Space Memory Estimation Reproducibility Adding Fake Target Measurements and Parameter Noise