Source code for baybe.utils.dataframe

"""Dataframe utilities."""

from __future__ import annotations

import logging
from collections.abc import Collection, Iterable, Sequence
from typing import (
    TYPE_CHECKING,
    Literal,
    overload,
)

import numpy as np
import pandas as pd

from baybe.targets.base import Target
from baybe.targets.binary import BinaryTarget
from baybe.targets.enum import TargetMode
from baybe.utils.numerical import DTypeFloatNumpy

if TYPE_CHECKING:
    from torch import Tensor

    from baybe.parameters import Parameter

# Logging
_logger = logging.getLogger(__name__)


@overload
def to_tensor(x: np.ndarray | pd.DataFrame, /) -> Tensor: ...


@overload
def to_tensor(*x: np.ndarray | pd.DataFrame) -> tuple[Tensor, ...]: ...


[docs] def to_tensor(*x: np.ndarray | pd.DataFrame) -> Tensor | tuple[Tensor, ...]: """Convert numpy arrays and pandas dataframes to tensors. Args: *x: The array(s)/dataframe(s) to be converted. Returns: The provided array(s)/dataframe(s) represented as tensor(s). """ # FIXME This function seems to trigger a problem when some columns in either of # the dfs have a dtype other than int or float (e.g. object, bool). This can # weirdly happen, even if all values are numeric, e.g. when a target column is # looked up from a df in simulation, it can have dtype object even if it's all # floats. As a simple fix (this seems to be the most reasonable place to take # care of this) df.values has been changed to df.values.astype(float), # even though this seems like double casting here. import torch from baybe.utils.torch import DTypeFloatTorch out = tuple( torch.from_numpy( (xi.values if isinstance(xi, pd.DataFrame) else xi).astype(DTypeFloatNumpy) ).to(DTypeFloatTorch) for xi in x ) if len(x) == 1: out = out[0] return out
[docs] def add_fake_measurements( data: pd.DataFrame, targets: Collection[Target], good_reference_values: dict[str, list] | None = None, good_intervals: dict[str, tuple[float, float]] | None = None, bad_intervals: dict[str, tuple[float, float]] | None = None, ) -> pd.DataFrame: """Add fake measurements to a dataframe which was the result of a recommendation. It is possible to specify "good" values, which will be given a better target value. With this, the algorithm can be driven towards certain optimal values whilst still being random. Useful for testing. Note that the dataframe is changed in-place and also returned. Args: data: A dataframe containing parameter configurations in experimental representation, for instance, created via :func:`baybe.campaign.Campaign.recommend`. targets: The targets for which fake results should be added to the dataframe. good_reference_values: A dictionary containing parameter names (= dict keys) and respective parameter values (= dict values) that specify what will be considered good parameter settings. Conditions for different parameters are connected via "and" logic, i.e. the targets will only get good values when all parameters have good reference values. good_intervals: A dictionary containing target names (= dict keys) and respective "good" target value ranges (= dict values) in the form of 2-tuples. Each target will be assigned a random value in its respective target range whenever the corresponding parameters meet the conditions specified through ``good_reference_values``. bad_intervals: Analogous to ``good_intervals`` but covering the cases where the parameters lie outside the conditions specified through ``good_reference_values``. Returns: The modified dataframe. Raises: ValueError: If good values for a parameter were specified, but this parameter is not part of the dataframe. ValueError: If the target mode is unrecognized when trying to add fake values. TypeError: If the entries in ``good_reference_values`` are not lists. """ # Per default, there are no reference values for good parameters if good_reference_values is None: good_reference_values = {} # Validate input for param, vals in good_reference_values.items(): if param not in data.columns: raise ValueError( f"When adding fake results you specified good " f"values for the parameter '{param}' but this " f"parameter is not in the dataframe." ) if not isinstance(vals, list): raise TypeError( f"Entries in parameter 'good_reference_values' " f"(which is a dictionary) must be lists, but you " f"provided {vals}." ) # Set defaults for good intervals if good_intervals is None: good_intervals = {} for target in targets: if isinstance(target, BinaryTarget): continue if target.mode is TargetMode.MAX: lbound = target.bounds.lower if np.isfinite(target.bounds.lower) else 66 ubound = ( target.bounds.upper if np.isfinite(target.bounds.upper) else 100 ) interv = (lbound, ubound) elif target.mode is TargetMode.MIN: lbound = target.bounds.lower if np.isfinite(target.bounds.lower) else 0 ubound = target.bounds.upper if np.isfinite(target.bounds.upper) else 33 interv = (lbound, ubound) elif target.mode is TargetMode.MATCH: lbound = target.bounds.lower if np.isfinite(target.bounds.lower) else 0 ubound = ( target.bounds.upper if np.isfinite(target.bounds.upper) else 100 ) interv = ( lbound + 0.4 * (ubound - lbound), lbound + 0.6 * (ubound - lbound), ) else: raise ValueError( "Unrecognized target mode when trying to add fake values." ) good_intervals[target.name] = interv # Set defaults for bad intervals if bad_intervals is None: bad_intervals = {} for target in targets: if isinstance(target, BinaryTarget): continue if target.mode is TargetMode.MAX: lbound = target.bounds.lower if np.isfinite(target.bounds.lower) else 0 ubound = target.bounds.upper if np.isfinite(target.bounds.upper) else 33 interv = (lbound, ubound) elif target.mode is TargetMode.MIN: lbound = target.bounds.lower if np.isfinite(target.bounds.lower) else 66 ubound = ( target.bounds.upper if np.isfinite(target.bounds.upper) else 100 ) interv = (lbound, ubound) elif target.mode is TargetMode.MATCH: lbound = target.bounds.lower if np.isfinite(target.bounds.lower) else 0 ubound = ( target.bounds.upper if np.isfinite(target.bounds.upper) else 100 ) interv = ( # Take as bad values the interval above the good interval lbound + 0.6 * (ubound - lbound), lbound + 1.2 * (ubound - lbound), ) else: raise ValueError( "Unrecognized target mode when trying to add fake values." ) bad_intervals[target.name] = interv # Add the fake data for each target for target in targets: if isinstance(target, BinaryTarget): # TODO: When refactoring, take into account good and bad intervals data[target.name] = np.random.choice( [target.failure_value, target.success_value], size=len(data) ) continue # Add bad values data[target.name] = np.random.uniform( bad_intervals[target.name][0], bad_intervals[target.name][1], len(data) ) # Create masks that identify locations where to place good values masks = [] for param, vals in good_reference_values.items(): mask = data[param].isin(vals) masks.append(mask) # Overwrite bad values with good ones using the computed masks if len(masks) > 0: final_mask = pd.concat(masks, axis=1).all(axis=1) data.loc[final_mask, target.name] = np.random.uniform( good_intervals[target.name][0], good_intervals[target.name][1], final_mask.sum(), ) return data
[docs] def add_parameter_noise( data: pd.DataFrame, parameters: Iterable[Parameter], noise_type: Literal["absolute", "relative_percent"] = "absolute", noise_level: float = 1.0, ) -> pd.DataFrame: """Apply uniform noise to the parameter values of a recommendation frame. The noise can be additive or multiplicative. This can be used to simulate experimental noise or imperfect user input containing numerical parameter values that differ from the recommendations. Note that the dataframe is changed in-place and also returned. Args: data: Output of the ``recommend`` function of a ``Campaign`` object, see :func:`baybe.campaign.Campaign.recommend`. parameters: The parameters for which the values shall be corrupted. noise_type: Defines whether the noise should be additive or multiplicative. noise_level: Level/magnitude of the noise. Must be provided as numerical value for noise type ``absolute`` and as percentage for noise type ``relative_percent``. Returns: The modified dataframe. Raises: ValueError: If ``noise_type`` is neither ``absolute`` nor ``relative_percent``. """ # Validate input if noise_type not in ("relative_percent", "absolute"): raise ValueError( f"Parameter 'noise_type' was {noise_type} but must be either " "'absolute' or 'relative_percent'." ) for param in (p for p in parameters if p.is_numerical): # Add selected noise type if noise_type == "relative_percent": data[param.name] *= np.random.uniform( 1.0 - noise_level / 100.0, 1.0 + noise_level / 100.0, len(data) ) elif noise_type == "absolute": data[param.name] += np.random.uniform(-noise_level, noise_level, len(data)) # Respect continuous intervals if param.is_continuous: data[param.name] = data[param.name].clip( param.bounds.lower, param.bounds.upper ) return data
[docs] def df_drop_single_value_columns( df: pd.DataFrame, lst_exclude: list = None ) -> pd.DataFrame: """Drop dataframe columns with zero variance. Args: df: The dataframe to be cleaned. lst_exclude: List of column names that are excluded from this filter. Returns: The cleaned dataframe. """ if lst_exclude is None: lst_exclude = [] to_keep = [] for col in df.columns: if (col in lst_exclude) or (df[col].nunique() > 1): to_keep.append(col) return df[to_keep]
[docs] def df_drop_string_columns( df: pd.DataFrame, ignore_list: list[str] | None = None ) -> pd.DataFrame: """Drop dataframe columns with string values. Args: df: The dataframe to be cleaned. ignore_list: List of columns that should not be dropped, even if they include string values. Returns: The cleaned dataframe. """ ignore_list = ignore_list or [] no_string = ~df.applymap(lambda x: isinstance(x, str)).any() no_string = no_string[no_string].index to_keep = set(no_string).union(set(ignore_list)) ordered_cols = [col for col in df if col in to_keep] return df[ordered_cols]
[docs] def df_uncorrelated_features( df: pd.DataFrame, exclude_list: list[str] | None = None, threshold: float = 0.7 ): """Return an uncorrelated set of features. Adapted from edbo (https://github.com/b-shields/edbo , https://doi.org/10.1038/s41586-021-03213-y). Args: df: The dataframe to be cleaned exclude_list: If provided this defines the columns that should be ignored threshold: Threshold for column-column correlation above which columns should be dropped Returns: A new dataframe """ # TODO: revise or replace with VRE method if exclude_list is None: data = df.copy() else: data = df.drop(columns=exclude_list) corr = data.corr().abs() to_keep = [] for i in range(len(corr.iloc[:, 0])): above = corr.iloc[:i, i] if len(to_keep) > 0: above = above[to_keep] if len(above[above < threshold]) == len(above): to_keep.append(corr.columns.values[i]) data = data[to_keep] if exclude_list is not None: data[exclude_list] = df.loc[:, exclude_list] return data
[docs] def fuzzy_row_match( left_df: pd.DataFrame, right_df: pd.DataFrame, parameters: Sequence[Parameter], numerical_measurements_must_be_within_tolerance: bool, ) -> pd.Index: """Match row of the right dataframe to the rows of the left dataframe. This is useful for validity checks and to automatically match measurements to entries in the search space, e.g. to detect which ones have been measured. For categorical parameters, there needs to be an exact match with any of the allowed values. For numerical parameters, the user can decide via a flag whether values outside the tolerance should be accepted. Args: left_df: The data that serves as lookup reference. right_df: The data that should be checked for matching rows in the left dataframe. parameters: List of baybe parameter objects that are needed to identify potential tolerances. numerical_measurements_must_be_within_tolerance: If ``True``, numerical parameters are matched with the search space elements only if there is a match within the parameter tolerance. If ``False``, the closest match is considered, irrespective of the distance. Returns: The index of the matching rows in ``left_df``. Raises: ValueError: If some rows are present in the right but not in the left dataframe. ValueError: If the input data has invalid values. """ # Assert that all parameters appear in the given dataframe if not all(col in right_df.columns for col in left_df.columns): raise ValueError( "For fuzzy row matching all rows of the right dataframe need to be present" " in the left dataframe." ) inds_matched = [] # Iterate over all input rows for ind, row in right_df.iterrows(): # Check if the row represents a valid input valid = True for param in parameters: if param.is_numerical: if numerical_measurements_must_be_within_tolerance: valid &= param.is_in_range(row[param.name]) else: valid &= param.is_in_range(row[param.name]) if not valid: raise ValueError( f"Input data on row with the index {row.name} has invalid " f"values in parameter '{param.name}'. " f"For categorical parameters, values need to exactly match a " f"valid choice defined in your config. " f"For numerical parameters, a match is accepted only if " f"the input value is within the specified tolerance/range. Set " f"the flag 'numerical_measurements_must_be_within_tolerance' " f"to 'False' to disable this behavior." ) # Differentiate category-like and discrete numerical parameters cat_cols = [p.name for p in parameters if not p.is_numerical] num_cols = [p.name for p in parameters if (p.is_numerical and p.is_discrete)] # Discrete parameters must match exactly match = left_df[cat_cols].eq(row[cat_cols]).all(axis=1, skipna=False) # For numeric parameters, match the entry with the smallest deviation # TODO: allow alternative distance metrics for col in num_cols: abs_diff = (left_df[col] - row[col]).abs() match &= abs_diff == abs_diff.min() # We expect exactly one match. If that's not the case, print a warning. inds_found = left_df.index[match].to_list() if len(inds_found) == 0 and len(num_cols) > 0: _logger.warning( "Input row with index %s could not be matched to the search space. " "This could indicate that something went wrong.", ind, ) elif len(inds_found) > 1: _logger.warning( "Input row with index %s has multiple matches with " "the search space. This could indicate that something went wrong. " "Matching only first occurrence.", ind, ) inds_matched.append(inds_found[0]) else: inds_matched.extend(inds_found) return pd.Index(inds_matched)
[docs] def pretty_print_df( df: pd.DataFrame, max_rows: int = 6, max_columns: int = 4, max_colwidth: int = 16, precision: int = 3, ) -> str: """Convert a dataframe into a pretty/readable format. This function returns a customized str representation of the dataframe. In case the dataframe is empty, it returns a corresponding statement. Args: df: The dataframe to be printed. max_rows: Maximum number of rows to display. max_columns: Maximum number of columns to display. max_colwidth: Maximum width of an individual column. precision: Number of digits to which numbers should be rounded. Returns: The values to be printed as a str table. """ # Get custom str representation via pandas option_context with pd.option_context( "display.max_rows", max_rows, "display.max_columns", max_columns, "display.max_colwidth", max_colwidth, "display.precision", precision, "expand_frame_repr", False, ): # Pandas does not truncate the names of columns with long names, which makes # computational representations barely readable in some of the examples. Hence, # we truncate them manually. For details, see # https://stackoverflow.com/questions/64976267/pandas-truncate-column-names) str_df = df.rename( columns=lambda x: x[:max_colwidth], ) str_df = str(str_df) return str_df