[docs]@define(kw_only=True)classBotorchRecommender(BayesianRecommender):"""A pure recommender utilizing Botorch's optimization machinery. This recommender makes use of Botorch's ``optimize_acqf_discrete``, ``optimize_acqf`` and ``optimize_acqf_mixed`` functions to optimize discrete, continuous and hybrid search spaces, respectively. Accordingly, it can be applied to all kinds of search spaces. Note: In hybrid search spaces, the used algorithm performs a brute-force optimization that can be computationally expensive. Thus, the behavior of the algorithm in hybrid search spaces can be controlled via two additional parameters. """# Class variablescompatibility:ClassVar[SearchSpaceType]=SearchSpaceType.HYBRID# See base class.# Object variablessequential_continuous:bool=field(default=False)"""Flag defining whether to apply sequential greedy or batch optimization in **continuous** search spaces. In discrete/hybrid spaces, sequential greedy optimization is applied automatically. """hybrid_sampler:DiscreteSamplingMethod|None=field(converter=optional_c(DiscreteSamplingMethod),default=None)"""Strategy used for sampling the discrete subspace when performing hybrid search space optimization."""sampling_percentage:float=field(default=1.0)"""Percentage of discrete search space that is sampled when performing hybrid search space optimization. Ignored when ``hybrid_sampler="None"``."""n_restarts:int=field(validator=[instance_of(int),gt(0)],default=10)"""Number of times gradient-based optimization is restarted from different initial points. **Does not affect purely discrete optimization**. """n_raw_samples:int=field(validator=[instance_of(int),gt(0)],default=64)"""Number of raw samples drawn for the initialization heuristic in gradient-based optimization. **Does not affect purely discrete optimization**. """@sampling_percentage.validatordef_validate_percentage(# noqa: DOC101, DOC103self,_:Any,value:float)->None:"""Validate that the given value is in fact a percentage. Raises: ValueError: If ``value`` is not between 0 and 1. """ifnot0<=value<=1:raiseValueError(f"Hybrid sampling percentage needs to be between 0 and 1 but is {value}")@overridedef_recommend_discrete(self,subspace_discrete:SubspaceDiscrete,candidates_exp:pd.DataFrame,batch_size:int,)->pd.Index:"""Generate recommendations from a discrete search space. Args: subspace_discrete: The discrete subspace from which to generate recommendations. candidates_exp: The experimental representation of all discrete candidate points to be considered. batch_size: The size of the recommendation batch. Raises: IncompatibleAcquisitionFunctionError: If a non-Monte Carlo acquisition function is used with a batch size > 1. Returns: The dataframe indices of the recommended points in the provided experimental representation. """ifbatch_size>1andnotself.acquisition_function.is_mc:raiseIncompatibleAcquisitionFunctionError(f"The '{self.__class__.__name__}' only works with Monte Carlo "f"acquisition functions for batch sizes > 1.")ifbatch_size>1andisinstance(self.acquisition_function,qThompsonSampling):raiseIncompatibilityError("Thompson sampling currently only supports a batch size of 1.")frombotorch.optimimportoptimize_acqf_discrete# determine the next set of points to be testedcandidates_comp=subspace_discrete.transform(candidates_exp)points,_=optimize_acqf_discrete(self._botorch_acqf,batch_size,to_tensor(candidates_comp))# retrieve the index of the points from the input dataframe# IMPROVE: The merging procedure is conceptually similar to what# `SearchSpace._match_measurement_with_searchspace_indices` does, though using# a simpler matching logic. When refactoring the SearchSpace class to# handle continuous parameters, a corresponding utility could be extracted.idxs=pd.Index(pd.merge(pd.DataFrame(points,columns=candidates_comp.columns),candidates_comp.reset_index(),on=list(candidates_comp),how="left",)["index"])returnidxs@overridedef_recommend_continuous(self,subspace_continuous:SubspaceContinuous,batch_size:int,)->pd.DataFrame:"""Generate recommendations from a continuous search space. Args: subspace_continuous: The continuous subspace from which to generate recommendations. batch_size: The size of the recommendation batch. Raises: IncompatibleAcquisitionFunctionError: If a non-Monte Carlo acquisition function is used with a batch size > 1. Returns: A dataframe containing the recommendations as individual rows. """# For batch size > 1, this optimizer needs a MC acquisition functionifbatch_size>1andnotself.acquisition_function.is_mc:raiseIncompatibleAcquisitionFunctionError(f"The '{self.__class__.__name__}' only works with Monte Carlo "f"acquisition functions for batch sizes > 1.")importtorchfrombotorch.optimimportoptimize_acqfpoints,_=optimize_acqf(acq_function=self._botorch_acqf,bounds=torch.from_numpy(subspace_continuous.comp_rep_bounds.values),q=batch_size,num_restarts=self.n_restarts,raw_samples=self.n_raw_samples,equality_constraints=[c.to_botorch(subspace_continuous.parameters)forcinsubspace_continuous.constraints_lin_eq]orNone,# TODO: https://github.com/pytorch/botorch/issues/2042inequality_constraints=[c.to_botorch(subspace_continuous.parameters)forcinsubspace_continuous.constraints_lin_ineq]orNone,# TODO: https://github.com/pytorch/botorch/issues/2042sequential=self.sequential_continuous,)# Return optimized points as dataframerec=pd.DataFrame(points,columns=subspace_continuous.parameter_names)returnrec@overridedef_recommend_hybrid(self,searchspace:SearchSpace,candidates_exp:pd.DataFrame,batch_size:int,)->pd.DataFrame:"""Recommend points using the ``optimize_acqf_mixed`` function of BoTorch. This functions samples points from the discrete subspace, performs optimization in the continuous subspace with these points being fixed and returns the best found solution. **Important**: This performs a brute-force calculation by fixing every possible assignment of discrete variables and optimizing the continuous subspace for each of them. It is thus computationally expensive. **Note**: This function implicitly assumes that discrete search space parts in the respective data frame come first and continuous parts come second. Args: searchspace: The search space in which the recommendations should be made. candidates_exp: The experimental representation of the candidates of the discrete subspace. batch_size: The size of the calculated batch. Raises: IncompatibleAcquisitionFunctionError: If a non-Monte Carlo acquisition function is used with a batch size > 1. Returns: The recommended points. """# For batch size > 1, this optimizer needs a MC acquisition functionifbatch_size>1andnotself.acquisition_function.is_mc:raiseIncompatibleAcquisitionFunctionError(f"The '{self.__class__.__name__}' only works with Monte Carlo "f"acquisition functions for batch sizes > 1.")importtorchfrombotorch.optimimportoptimize_acqf_mixed# Transform discrete candidatescandidates_comp=searchspace.discrete.transform(candidates_exp)# Calculate the number of samples from the given percentagen_candidates=math.ceil(self.sampling_percentage*len(candidates_comp.index))# Potential sampling of discrete candidatesifself.hybrid_samplerisnotNone:candidates_comp=sample_numerical_df(candidates_comp,n_candidates,method=self.hybrid_sampler)# Prepare all considered discrete configurations in the# List[Dict[int, float]] format expected by BoTorch.num_comp_columns=len(candidates_comp.columns)candidates_comp.columns=list(range(num_comp_columns))# type: ignorefixed_features_list=candidates_comp.to_dict("records")# Actual call of the BoTorch optimization routinepoints,_=optimize_acqf_mixed(acq_function=self._botorch_acqf,bounds=torch.from_numpy(searchspace.comp_rep_bounds.values),q=batch_size,num_restarts=self.n_restarts,raw_samples=self.n_raw_samples,fixed_features_list=fixed_features_list,equality_constraints=[c.to_botorch(searchspace.continuous.parameters,idx_offset=len(candidates_comp.columns),)forcinsearchspace.continuous.constraints_lin_eq]orNone,# TODO: https://github.com/pytorch/botorch/issues/2042inequality_constraints=[c.to_botorch(searchspace.continuous.parameters,idx_offset=num_comp_columns,)forcinsearchspace.continuous.constraints_lin_ineq]orNone,# TODO: https://github.com/pytorch/botorch/issues/2042)# Align candidates with search space index. Done via including the search space# index during the merge, which is used later for back-translation into the# experimental representationmerged=pd.merge(pd.DataFrame(points),candidates_comp.reset_index(),on=list(candidates_comp.columns),how="left",).set_index("index")# Get experimental representation of discrete partrec_disc_exp=searchspace.discrete.exp_rep.loc[merged.index]# Combine discrete and continuous partsrec_exp=pd.concat([rec_disc_exp,merged.iloc[:,num_comp_columns:].set_axis(searchspace.continuous.parameter_names,axis=1),],axis=1,)returnrec_exp@overridedef__str__(self)->str:fields=[to_string("Surrogate",self._surrogate_model),to_string("Acquisition function",self.acquisition_function,single_line=True),to_string("Compatibility",self.compatibility,single_line=True),to_string("Sequential continuous",self.sequential_continuous,single_line=True),to_string("Hybrid sampler",self.hybrid_sampler,single_line=True),to_string("Sampling percentage",self.sampling_percentage,single_line=True),]returnto_string(self.__class__.__name__,*fields)
# Collect leftover original slotted classes processed by `attrs.define`gc.collect()